Photoelectrochemical behavior of hierarchically structured Si/WO3 core-shell tandem photoanodes.

نویسندگان

  • Robert H Coridan
  • Kevin A Arpin
  • Bruce S Brunschwig
  • Paul V Braun
  • Nathan S Lewis
چکیده

WO3 thin films have been deposited in a hierarchically structured core-shell morphology, with the cores consisting of an array of Si microwires and the shells consisting of a controlled morphology WO3 layer. Porosity was introduced into the WO3 outer shell by using a self-assembled microsphere colloidal crystal as a mask during the deposition of the WO3 shell. Compared to conformal, unstructured WO3 shells on Si microwires, the hierarchically structured core-shell photoanodes exhibited enhanced near-visible spectral response behavior, due to increased light absorption and reduced distances over which photogenerated carriers were collected. The use of structured substrates also improved the growth rate of microsphere-based colloidal crystals and suggests strategies for the use of colloidal materials in large-scale applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational and scalable fabrication of high-quality WO3/CdS core/shell nanowire arrays for photoanodes toward enhanced charge separation and transport under visible light.

High-quality one-dimensional WO3/CdS core/shell nanowire arrays used as photoanodes in photoelectrochemical (PEC) cells were for the first time prepared via a rational, two-step chemical vapor deposition process. The narrow band-gap CdS shell was homogeneously coated on the entire surface of as-grown WO3 core nanowire arrays, forming coaxial heterostructures. The one-dimensional core/shell hete...

متن کامل

Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation.

We report a scalably synthesized WO3/BiVO4 core/shell nanowire photoanode in which BiVO4 is the primary light-absorber and WO3 acts as an electron conductor. These core/shell nanowires achieve the highest product of light absorption and charge separation efficiencies among BiVO4-based photoanodes to date and, even without an added catalyst, produce a photocurrent of 3.1 mA/cm(2) under simulated...

متن کامل

Mesoscale modeling of photoelectrochemical devices: light absorption and carrier collection in monolithic, tandem, Si|WO3 microwires.

We analyze mesoscale light absorption and carrier collection in a tandem junction photoelectrochemical device using electromagnetic simulations. The tandem device consists of silicon (E(g,Si) = 1.1 eV) and tungsten oxide (E(g,WO3) = 2.6 eV) as photocathode and photoanode materials, respectively. Specifically, we investigated Si microwires with lengths of 100 µm, and diameters of 2 µm, with a 7 ...

متن کامل

Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3.

Hexagonal nanoflower WO3 arrays have been prepared by using RCOO(-) as the structure directing agent in the microwave-assisted hydrothermal synthesis process. The photoelectrochemical performance of the synthesized hexagonal flower-like WO3 electrode was enhanced compared with the block-like WO3 film.

متن کامل

Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte.

WO3 is a promising candidate for a photoanode material in an acidic electrolyte, in which it is more stable than most metal oxides, but kinetic limitations combined with the large driving force available in the WO3 valence band for water oxidation make competing reactions such as the oxidation of the acid counterion a more favorable reaction. The incorporation of an oxygen evolving catalyst (OE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 2014